Community Participation

The Mansfield Board of Selectmen also serve as Water Commissioners for the Town. Unless posted otherwise, the Board meets every Wednesday at 7 p.m. in the Mansfield Town Hall (third-floor, Conference Room 3A/B), Six Park Row, Mansfield, MA. Water customers are welcome to participate in these public meetings.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

The Benefits of Fluoridation

Fluoride is a naturally occurring element in many water supplies in trace amounts. In our system, the fluoride level is adjusted to an optimal level averaging 0.7 parts per million (ppm) to improve oral health in children. At this level, it is safe, odorless, colorless, and tasteless. Our water system has been providing this treatment since 1997. There are over 3.9 million people in 140 Massachusetts water systems and 184 million people in the U.S. who receive the health and economic benefits of fluoridation.

Source Water Assessment

The Source Water Assessment and Protection (SWAP) Program established under the federal Safe Drinking Water Act requires every state to: inventory land uses within the recharge areas of all public water supply sources; assess the susceptibility of drinking water sources to contamination from these land uses; and publicize the results to provide support for improve protection. The Massachusetts Department of Environmental Protection completed a Source Water Assessment and Protection Program report for the Town of Mansfield February 27, 2003. The area of influence for Canoe River basin was modified in 2013. Our system’s susceptibility rating is moderate to high. It is important to understand that a high susceptibility rating does not imply poor water quality, only the system’s potential to become contaminated within the assessment area. Copies are available at the Mansfield Water Division, 500B East Street, Mansfield, MA 02048.

Questions?

For more information about this report, or for any questions relating to your drinking water, please call Town of Mansfield’s Water Operations Manager, Kurt E. Gaffney, at (508) 261-7376.
Where Does My Water Come From?

The water for the Town of Mansfield comes from the Ten Mile River Basin and the Taunton River Basin. Mansfield water is currently supplied from 9 gravel-packed wells and 1 wellfield:

• Cate Springs Well #1, located off Maple Street, pumps 1,100 gallons per minute (gpm).
• Albertini Wells #2, 3, and 4, located off West Street, supply a treatment facility that removes iron and manganese. Each of these wells pumps 300 gpm.
• Mahana Well #6 pumps 700 gpm, and Morrison Well #10 pumps 695 gpm. They are both located off Plain Street in West Mansfield.
• Dustin Well #7 pumps 800 gpm, Prescott Well #8 pumps 700 gpm, and Prescott Well #9 pumps 500 gpm. These wells are located in East Mansfield off of East Street; they supply a treatment facility that removes iron and manganese.
• Walsh Wellfield pumps 1,042 gpm. The wellfield is located off Gilbert Street in West Mansfield and also includes a treatment facility to remove iron and manganese.
• A small number of residences in West Mansfield are provided water by the City of Attleboro Water System.

The Town is interconnected and has agreements with the Towns of Easton, Norton, and Foxborough, Massachusetts, to supply water in emergency situations.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the Massachusetts Department of Environmental Protection (DEP) and the U.S. Environmental Protection Agency (U.S. EPA) prescribe regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA’s Safe Drinking Water Hotline at (800) 426-4791.
What’s a Cross-Connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or when attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection.

For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791.

Count on Us

Delivering high-quality drinking water to our customers involves far more than just pushing water through pipes. Water treatment is a complex, time-consuming process. Because tap water is highly regulated by state and federal laws, water treatment plant and system operators must be licensed and are required to commit to long-term, on-the-job training before becoming fully qualified. Our licensed water professionals have a basic understanding of a wide range of subjects, including mathematics, biology, chemistry, and physics. Some of the tasks they complete on a regular basis include:

- Operating and maintaining equipment to purify and clarify water;
- Monitoring and inspecting machinery, meters, gauges, and operating conditions;
- Conducting tests and inspections on water and evaluating the results;
- Maintaining optimal water chemistry;
- Applying data to formulas that determine treatment requirements, flow levels, and concentration levels;
- Documenting and reporting test results and system operations to regulatory agencies; and
- Serving our community through customer support, education, and outreach.

So, the next time you turn on your faucet, think of the skilled professionals who stand behind each drop.

BY THE NUMBERS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The average cost for about 5 gallons of water supplied to a home in the U.S.</td>
<td>1 CENT</td>
</tr>
<tr>
<td>The amount of Earth’s water that is salty or otherwise undrinkable, or locked away and unavailable in ice caps and glaciers.</td>
<td>99%</td>
</tr>
<tr>
<td>The average daily number of gallons of total home water use for each person in the U.S.</td>
<td>50 GALLONS</td>
</tr>
<tr>
<td>The amount of Earth’s surface that’s covered by water.</td>
<td>71%</td>
</tr>
<tr>
<td>The amount of water on Earth in cubic miles.</td>
<td>330 MILLION</td>
</tr>
<tr>
<td>The amount of Earth’s water that is available for all of humanity’s needs.</td>
<td>1%</td>
</tr>
<tr>
<td>The amount of the human brain that contains water.</td>
<td>75%</td>
</tr>
</tbody>
</table>
Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels. The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 4th stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES

<table>
<thead>
<tr>
<th>SUBSTANCE (UNIT OF MEASURE)</th>
<th>YEAR SAMPLED</th>
<th>MCL [MRDL]</th>
<th>MCLG [MRDLG]</th>
<th>AMOUNT DETECTED</th>
<th>RANGE LOW-HIGH</th>
<th>VIOLATION</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (ppm)</td>
<td>2018</td>
<td>[4]</td>
<td>[4]</td>
<td>0.42</td>
<td>0.31–0.52</td>
<td>No</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2018</td>
<td>4</td>
<td>4</td>
<td>0.58</td>
<td>0.44–0.76</td>
<td>No</td>
<td>Water additive that promotes strong teeth</td>
</tr>
<tr>
<td>TTHMs [Total Trihalomethanes] (ppb)</td>
<td>2018</td>
<td>80</td>
<td>NA</td>
<td>33.5</td>
<td>12–57</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

Tap water samples were collected for lead and copper analyses from sample sites throughout the community.

UNREGULATED SUBSTANCES

<table>
<thead>
<tr>
<th>SUBSTANCE (UNIT OF MEASURE)</th>
<th>YEAR SAMPLED</th>
<th>AL</th>
<th>MCLG</th>
<th>AMOUNT DETECTED (90TH %ILE)</th>
<th>SITES ABOVE AL/ TOTAL SITES</th>
<th>VIOLATION</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td>2016</td>
<td>1.3</td>
<td>1.3</td>
<td>0.29</td>
<td>0/32</td>
<td>No</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
<tr>
<td>Lead (ppb)</td>
<td>2016</td>
<td>15</td>
<td>0</td>
<td>5</td>
<td>0/32</td>
<td>No</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

UNREGULATED CONTAMINANT MONITORING RULE - PART 4 (UCMR4)

<table>
<thead>
<tr>
<th>SUBSTANCE (UNIT OF MEASURE)</th>
<th>YEAR SAMPLED</th>
<th>AMOUNT DETECTED</th>
<th>RANGE LOW-HIGH</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAA5 (ppb)</td>
<td>2018</td>
<td>14.4</td>
<td>5.6–43</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

1 Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of monitoring unregulated contaminants is to assist the EPA in determining their occurrence in drinking water and whether future regulation is warranted.

2 The Massachusetts Department of Environmental Protection maintains a guideline level of 20 ppm for sodium.

Definitions

- **90th %ile**: Out of every 10 homes sampled, 9 were at or below this level. This number is compared to the Action Level to determine lead and copper compliance.
- **AL (Action Level)**: The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
- **MCL (Maximum Contaminant Level)**: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **MCLG (Maximum Contaminant Level Goal)**: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **MRDL (Maximum Residual Disinfectant Level)**: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- **MRDLG (Maximum Residual Disinfectant Level Goal)**: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).